Radiation and anti-PD-L1 treatment combinations: Immune cell responses and dose scheduling optimization using a joint experimental and systems modeling approach

Yuri Kosinsky¹, Simon Dovedi², Kirill Peskov¹, Veronika Voronova¹, Lulu Chu^{3a}, Eric Masson^{3a}, Helen Tomkinson^{3b}, Nidal Al-Huniti^{3a}, Don Stanski^{3c}, Gabriel Helmlinger^{3a}

¹M&S Decisions, Moscow, Russia; ²MedImmune, Cambridge, UK; ³Early Clinical Development, IMED Biotech Unit, AstraZeneca; ^{3a}Waltham, MA, USA; ^{3b}Cambridge, UK; ^{3c}Gaithersburg, MD, USA

Executive summary

- A semi-mechanistic ODE-based model describing interactions among host immune cells and tumor cells was developed;
- The proposed model was used to explore the effects of radiotherapy (RT) and anti-PD-L1 antibodies, including their combinations, on the tumor microenvironment and tumor growth dynamics in experimental murine models; • A population approach was used to select the optimal model structure and

identify determinants of anti-tumor responses and of inter-individual variability. The model was validated using independent data, and anti-tumor efficacy was predicted for a range of RT/anti-PD-L1 dosing schedules.

Results

Model validation

To further assess the predictive power of the IO/RT semi-mechanistic model model, we used it in a 'forward-simulation' mode to independently reproduce additional experimental data from [4]. For example, the model adequately predicted independent CT26 tumor size data in response to novel RT/anti-PD-L1 combination dose regimens not used in model calibration (Fig.3)

Introduction

Investigations into the interactions between radiotherapy (RT) and the host immune system have uncovered new mechanisms that can potentially be exploited to improve the efficacy of RT [1]. RT not only exerts direct cytotoxic effects on tumor cells, but may also modulate the tumor microenvironment to facilitate a significant anti-tumor immune response. Combination therapies of radiation and mAb blockade of the immunosuppressive programmed death-ligand 1 (PD-L1) have indeed shown synergy in a number of preclinical studies [2, 3].

Methods

We developed a semi-mechanistic population model of anti-tumor T cell immune response development linked to CT26 tumor size dynamics in mice, under control, mono- and combination settings of RT and anti-PD-L1 treatments (Fig. 1). The model was implemented in MONOLIX, and the parameters was fitted to individual animal data from [2]. Variability in individual tumor size dynamics was taken into account using a mixed-effects model at the level of tumor infiltrating T cell influx.

Fig. 3 Model predicted tumor size dynamics under additional RT/anti-PD-L1 combination treatment regimens. Black dashed lines and thin solid lines: experimental median values and individual trends; red lines, solid: model-predicted median; graded (light to dark) red-shaded areas: respectively, 90%, 60% and 30% prediction intervals (PI).

Model predictions

Using such a validated model, we gained a detailed quantitative understanding of the synergistic effects underlying immune cell interactions as linked to tumor size modulation, under RT and anti-PD-L1 treatments. The model indeed featured how RT may accelerate an immune response development by improving tumor antigen presentation, thereby inhibiting tumor growth and delaying the accumulation of immuno-suppressive regulatory T cells (Treg) as a result. PD-L1 expression induction in tumor cells, which works as a negative feedback in the model, can be blocked by an anti-PD-L1 mAb. Thus, combinations of RT and anti-PD-L1 treatments may offset the immuno-suppressive impact of Treg and PD-L1 over time, thereby inducing a sufficiently robust accumulation of cytotoxic Teff cells with subsequent tumor shrinkage or rejection.

We further show the potential in using this model as an *in-silico* evaluation tool to explore, prospectively, different combination dosing regimens and sequencing, in order to achieve optimal anti-tumor responses (Fig.4). For example, a 10-Gy single-dose RT with either concurrent and preceding anti-PD-L1 (10 mg/kg 3qw) was found to be optimal in CT26 tumor-bearing mice.

Agsys: Systemic level of tumor antigen DCmat: dendritic cells (mature) DSB: double strends breaks IAR: immune activation rate

TCD: tumor cells death rate Teff: differentiated T effector cells Treg: suppressive T regulatory cells

Fig. 1 Semi-mechanistic immune-oncology (IO)/RT model scheme

Model predictions for individual tumor size dynamics and median trends under all treatment conditions were examined (Fig. 2). Experimental tumor size data were then mapped onto prediction distributions; most of the data were captured within the 5% to 95% percentile intervals. In full agreement with [2], the model indicated that scheduling of an anti-PD-L1 mAb concomitantly with, but not following RT administration was required to maximize efficacy benefits.

Fig. 4 Model predictions of efficacy for different mono- and combination dosing

regimens and sequencing. Efficacy was defined as the number of animals with complete tumor rejection in a virtual experiment of 100 mice per treatment group. Confidence intervals (CIs) treatment efficacy are shown in brackets.

Conclusions

This modeling study provided quantitative mechanistic insights into the links between RT and anti-tumor immune responses, and described how appropriate combinations and schedules of immuno-modulation and radiation may tip the immune balance in favor of the host, robustly enough to lead to tumor shrinkage or rejection.

Fig. 2 Model prediction distributions vs. individual animals data.

Black dashed lines and thin solid lines: experimental median values and individual trends; red lines, solid: modelpredicted median; graded (light to dark) red-shaded areas: respectively, 90%, 60% and 30% prediction intervals (PI).

References

1. R. R. Weichselbaum et al. "Radiotherapy and immunotherapy: a beneficial liaison?" (2017) Nature Rev Clin Oncol. doi:10.1038/nrclinonc.2016.211

2. S. J. Dovedi et al. "Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade". (2014) Cancer Res 74: 5458-5468.

3. L. Deng et al. "Irradiation and anti–PD-L1 treatment synergistically promote antitumor immunity in mice". (2014) J Clin Invest. 124:687–695.

4. S. J. Dovedi et al. "Fractionated radiation therapy stimulates anti-tumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD1 blockade". (2017) In press.

Acknowledgements

We would like to thank AstraZeneca and MedImmune colleagues from multiple disciplines for discussions and insights into this work.

